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Flip-Flop Modes in Symmetric and Asymmetric Colliding-Beam Storage Rings 

J. L. Tennyson 
Lawrence Berkeley Laboratory, MS 71-259, Berkeley CA 94720 

ABSTRACf 
A model of self-consistent beam blow-up in a colliding beam storage ring is described 
which explains the appearance of flip-flop modes in both symmetric and asymmetric 
beam systems. It derives the strong-strong steady-states and their stabilities from the 
weak-strong behavior. This model agrees well with the observed flip-flop behavior in 
storage rings, including the hysteresis seen when the beams are flipped from one 
asymmetric steady state to the other. It can be used to predict the behavior of proposed 
facilities in which the two colliding beams are characterized by different parameters. 

1. Introduction 

The luminosities of many colliding-beam storage rings are limited by the beam-beam interaction, the 
relativistically enhanced transverse electromagnetic force that a particle of one beam sees as it passes 
through a bunch of the opposing beam. The beam-beam interaction can cause transverse blowups of 
the two beams and/or shortening of beam lifetime. Studies of the beam-beam interaction have generally 
fallen into one of two general groups: weak-strong studies and strong-strong studies. 

The weak-strong model of the beam-beam interaction assumes that the interaction is one-way; that 
beam #1 affects beam #2 but not vice versa. This allows one to study the nonlinear behavior of the 
system without the added complexity of self-consistency. The strong-strong model, which in most 
cases is more realistic, assumes that beam #1 affects beam #2 and is simultaneously affected by beam 
#2. Unlike weak-strong equilibria, strong-strong equilibria may be timc-dependent; they may either 
oscillate regularly in timci (a limit cycle) or evolve chaotically (a chaotic attractor). The strong-strong 
model, because it requires that the behaviors of the two beams be self-consistent, is typically more 
complicated and more difficult to understand than the weak-strong. 

It is shown here that, under certain conditions, strong-strong behavior can be determined from weak­
strong behavior. These conditions are 1) that the strong-strong steady-states be time-independent, and 
2) that the RMS size of each beam depends only the spatial distribution of the opposing beam via its 
RMS width. These conditions are almost universally met in modern simulation models and there is 
evidence that they are nearly met in real machines. 
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That strong-strong time-independent equilibria can be studied with a weak-strong model is. to a cenain 
extent. intuitively reasonable. The idea has been implicit In most of the weak-strong studies performed 
during the past fifteen years. An approach similar to the one presented here was used to construct a 
model of flip-flop phenomena at VEPP-2M and PETRA [11. Certain elements of this analysis. the 
bifurcation in particular. play prominent roles in [21 and later studies by the same author. 

The ability to derive strong-strong behavior from weak-strong behavior is advantageous in both 
theoretical and simulation studies. On a theoretical level. it allows one to concentrate on the relatively 
simple problem of explaining the statistical behavior of one beam when it collides repeatedly with an 
opposing beam of known fixed shape. On the simulation level. it allows one to productively study 
beam-beam effects with the more time efficient weak-strong algorithms. and to check the behaviors of 
strong-strong a1gori~ms by comparing them to the behaviors theoretically predicted from the weak­
strong results. 

Although the weak-strong theory of the beam-beam interaction is inherently simpler than the strong­
strong. it is still far from complete. It is not yet sufficiently developed to predict. for example. the 
average luminosity of a proposed machine. This is because the beam-beam system is characterized by 
a "near-integrable" dynamic. a particularly intractable equation of motion exhibiting neither dynamical 
invariants (first integrals) nor statistical invariants (entropies). The nonlinearity destroys any 
potentially useful dynamical invariants while the KAM theorem frustrates statistically coherent 
behavior. Beam-beam kicks are correlated over very long periods of time and the decay rates of these 
correlations are extremely difficult to calculate. Statistical models. such as that proposed in [21. 
underestimate beam stability since they ignore long term correlations. Integrable dynamical models. 
such as that proposed in [31. tend to overestimate stability since they ignore the chaotic component of 
the motion that comes from nonlinear resonances. 

A self-consistent model of the beam-beam interaction is described in Section 2. Section 3 discusses the 
stabilities of the self-consistent equilibria. Section 4 shows that, under the conditions stated in Section 
2, the self-consistent equilibria can be derived from weak-strong equilibria. It is shown in Section 5 
that the stabilities of the self-consistent equilibria can also be derived from the weak-strong behavior. 
illustrative examples are given in Section 6. 

2. Self-Consistent Equilibria (Strong-Strong Model) 

A relatively simple theory of self-consistent beam-beam equilibria may be constructed given the 
following two assumptions: 

A. The system's "steady-state" solutions are time-independent, i.e. they are not limit cycles or 
chaotic attractors. This is generally true in real accelerators when no coherent modes are 
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excited. It is usually less true in strong-strong simulations where super-particle discreteness 

results in significant fluctuations at equilibrium. 

B . The time derivative of the RMS size of each beam, when the system is close to an equilibrium, 

depends on the shapes of the two beams only via their RMS widths. In most slrong-strong 

simulations, the time evolution of one beam depends on the shape of its opposing beam only 

via its RMS width, but the dependence on its own shape (via radiation damping and quantum 

excitation) is generally more complicated. In real machines, even the dependence on the shape 

of the opposing beam is more complicated. However, this approximation may be sufficiently 

valid as long as the beam shapes are never too far from Gaussian. 

Note that the second assumption is considerably weaker than the assumption that the beams are 

Gaussian at all times. The latter assumption would not be true since, at the beam-beam limit, the edges 

of the beam in the six dimensional phase space are irregular and the density of particles in the tails (at 

large amplitude) is considerably larger than Gaussian. In fact, if the distributions at equilibrium were 
known to within a small number of parameters (e.g. if they were known to be Gaussian), then the 

evolution of the distribution function could be numerically calculated in a low dimensional parameter 

space (this was attempted in [1] ). The near-integrable nature of the system's dynamic virtually insures 

that this cannot be done. 

In addition to the primary assumptions A and B, it is also assumed for convenience that the two beams 

are round; <11 = <1xl = <1yl and <12 = <1x2 = <1y2' Under these assumptions, the equations of motion for 
beam size have the general form 

(1) 

where p is the set of all known constants affecting beam size. 

(2) 

Note that the rate at which a beam changes size depends OIl the size of the opposing beam via the 

beam-beam interaction and on its own size via synchrotron radiation effects. The equations (1) define a 

vector field in the (<11,<12> plane. A schematic representation of a typical vector field is shown in figure 

. .1. The flow lines shown in the figure lie paraIIel to the vectors defined by (1). The vector field is , . .. ,.' 
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generally characterized by one or more attractors. which we have assumed (in A) to be generically 
isolated points. If there's more than one artractor. there will also be "basin boundaries" separating 
them. 

The equilibria of the vector field are defined by the conditions 

(3) 

Each of these conditions corresponds to a curve in the (O"I.av plane. The intersections of these curves 
give the equilibria. The equilibria curves for figure I are represented in figure 2 by thick lines. The 
curves intersect the flow lines where they are either vertical or horizontal. 

3. Stability 

To determine the stability of the equilibria defined by (3). the equations of motion (I) are linearized. In 
a sufficient! y small neighborhood of an equilibrium, the equations of motion can be approximated by 
the linearization 

(4) 

where 001 = 0"1 - O"eql is the displacement from the equilibrium size of beam #1. We have used the 
shorthand notation 

The stability of the equilibrium is determined by the eigenvalues A....l... of the matrix 

[ 
OVI OVI] 

M - 00"1 ~ 
- oV oV 2 1 .. 

00"1 ~' 

(5) 

(6) 
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Let 

The eigenvalues are then 

There are three generic typeS of equilibria (see figure 1) 

1. 

2. 

3. 

The equilibrium is an unstable saddle point if 

q < 0 (~ , A. are both real with opposite signs) 

The equilibrium is a node (non·oscillating attractor or repeller) if 

o < q < p2/4 (~ , A. are both real with the same signs) 

The node is stable if 
and unstable if 

p < 0 
p > 0 

The equilibrium is afocus (oscillating attractor or repeller) if 

p2/4 < q <A. , A. are complex and conjugate to one another) 

The focus is stable if 
and unstable if 

p < 0 
p > 0 

4. Derivation of Self-Consistent Equilibria from Weak-Strong Model 

(7) 

(8) 

(9) 

(10) 

(11) 

(l1a) 
(llb) 

(12) 

(12a) 

(12b) 

The function V (a.,albP.) is not known analytically. It's possible to determined it empirically from 
simulation, but because the parameter space (p) has such a high dimensionality, this dete:rmination is 
practical only in a small locality of a given point p. Furthermore. finding V (a .. a.,;pJ is unnecessary 
in many aa:elerator applications because sttong-sttong simulations give the stable equilibria dim:tly . 

. . -
But ignorance of V (a .. albPJ does not itse1f JmClude a theoretical UDderstanding of self-consistent 
equilibria. In fact, the self-consistcnt aspect of the problem. under certain conditions, can be separated 
entirely from the problem of finding V (a .. a.,;p.~ In this sense, the theory of beam-beam equilibria 
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can be factored into two independent partS: an understanding of the weak-strong model (roughly 

equivalent to finding V (a.,at.:p.), and a way of detennining the self-consistent behavior from the 
weak-strong behavior. 

It is shown here, given the assumptions A and B above, that the self-consistent equilibria and their 

stabilities can be derived from the weak-strong behavior. The self-consistent equations of motion 

correspond to two weak-strong systems; one for each beam. 

(13) 

(14) 

In each weak-strong system, the size of the strong beam becomes a fixed parameter and the state space 

reduces to one dimension. As with the self-consistent system, the equilibria are given by the conditions 

system #1 
(15) 

system #2 

If one knows the locations in the (al,av plane of the equilibria of both weak-strong beam systems, 

one can find from them all of the self-consistent equilibria. This is because the conditions (15) define 

curves in the (al,av plane that are identical to those defined by the conditions (3). The intersections of 

these weak-strong equilibria curves thus correspond to the self-consistent equilibria. 

The stabilities of the weak-strong equilibria are determined by the derivatives of V. A weak-strong 

equilibrium for al is stable if, at the equilibrium, 

oV(a t.a2;p!l < 0 

oa} 
Likewise, an equilibrium foc ~ is stable if 

- .' 

(16) 

(17) 

The curves defined by (t5) each correspond to a continuous set of weak-strong equilibria that are 
-, ;. 1(( dther stable or unstable. 
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5. Derivation of Self-Consistent Stability from the Weak-Strong Model 

It was demonstrated above that the self·consistent equilibria can be found from the intersections of the 
weak-strong equilibria curves (15). Finding the stability characteristics of the self-consistent equilibria 

is not quite so easy. A curve of weak-strong equilibria is typically represented by a function S(o;p). 

With arguments (02;PI), this S is the equilibrium beam size 0eql of beam #1; with arguments 

(ol;PV, it is the equilibrium size 0eq2 of beam #2. 

(18) 

Equations (18) correspond to solving equations (3) for 01 and 02 respectively. As with V (Oa,(Jb;P.), 

it's convenient to use the shorthand notation 

(19) 

The function S( a;p) will be called the weak-beam size function (WBS). In almost all cases of practical 
interest. there is only one such function. It is single-valued, and the equilibria it represents are stable. 
IDustrative examples are shown in figures 3a and 3b for two round beams operating on the coupling 
resonance at different tunes. Both the weak and strong beam sizes are normalized to the natural size of 
the weak beam. From (16), (17), (5) and (8), this means that the diagonal elements of the matrix M are 
negative and p = Tr (M) < O. Note from (10)-(12) that this does not determine the stability of the self­
consistent equilibrium, but it does eliminate unstable nodes and unstable foci. Thus, if the self­
consistent equilibrium is unstable, it must be a saddle point Whether or not it's a saddle point can be 

determined from the derivatives of S(a;p). To see this, notice that S(<12;PI) describes the contour 

V(crt,<12;Pt) = 0 in the (crlo~ plane. Thus, the derivative of V«JI,(J2;PI) in the direction defined by 

the curve S(<12;PI) is zero 

.. . . . ... .; ": 
..... - .-

dS! aVI _ dOl av! = 0 
Oa! 0a2 

dS! _ av! lav! 
dcrl - oaz ocr! 

(20) 

(21) 
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Similarly, for beam #2 

(22) 

Using (21) and (22), it's possible to calculate the sign of the determinant of M. If 

(23) 

then, from (21) and (22) 

Using the fact that (16) and (17) are satisfied, this can be written 

(24) 

so that 

Det(M» 0 (25) 

It can be shown by a similar argument that (25) does not hold when (23) is not satisfied. It was 
pointed out above that because Tr ( M) < 0, the equilibrium must be stable when Det (M) > 0 and 
unstable when Oct (M) < O. Thus (23) is a criterion for the stability of the self-consistent equilibrium. 
The criterion is valid as long as the weak-strong equilibria are both stable and the two assumptions A 

and B are accepted. Note that for a symmetric system, an equilibrium on the diagonal of the (O"l'GV 
plane has 

~ = dS! _ dSz 
dO" - daz - dO"! 

and the stability criterion (23) reduces to ' 

~ < 1 

(26) 

(27) 

'~'0 \ It may seem odd that a self-coosistent equilibrium can be unstable even when its associated weak-
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strong equilibria are both stable (and that the self-consistent equilibrium can be stable even when one 

of the weak-strong equilibria is unstable). This paradoxical situation is illustrated in figures 4a and 4b 

for the two conditions mentioned. In figure 4a, the equilibrium is unstable, but the flow lines all point 

inward where they cross the horizontal and vertical iIitercepts of the equilibrium. This means that 

motion constrained to either intercept will always approach the equilibrium. In figure 4b, the 

equilibrium is a stable focus but the flow lines point outward where they cross the vertical intercept . 
Motion constrained to that intercept would thus be unstable. 

The WBS function S(cr;p) is far easier to measure and to work with than the more complicated 

V (cra,crb;P.). If the assumptions A and B are correct (or sufficiently correct), the self-consistent 

equilibria and their stabilities can be obtained from S(cr;p) using (18) and (23). Solving the mystery of 

beam-beam blow-up then reduces to understanding the function S(CI;p). It is known that S(CI;p) 

generally decreases monotonically with CI for all values of the parameters p, and that it probably has a 

maximum value at cr = 0, or at least at some CI«1. However little is known about the dependence on 
the parameters p. Both simulation and experiment have shown that stronger weak-beam damping 

decreases S(CI;p), and that coupling between the synchrotron and betatron motions increase it. 

However the precise dependence is not known. Typical graphs of S(cr;p) are shown in figure 5 for a 

variety of strong beam currents. These graphs were obtained from a simulation model with moderate 
chromaticity (modulation of the betatron tune by the synchrotron motion). For a symmetric collider, 

the self-consistent beam size at each current value is represented by the intersection of the appropriate 
curve with the diagonal (shown as a thick line). Figure 5 suggests that symmetric balanced bearns 

with these parameter values will blow up until the current reaches 310- At this value, the slope of 

S( cr;p) on the diagonal reaches -1 and the symmetric steady state goes unstable. At larger currents, the 

beams fall into a 'flip-flop' condition. 

5. Examples 

It is helpful to consider some hypothetical examples. In the first example, the two beams are 

symmetric. This is the usual condition in an electron-positron collider where two beams of equal 

current circulate in opposite directions in the same ring. Figure 6 shows a low current situation 

(representative, not actual) where the beam blow-up is insignificant. The two curves are graphs of the 

functions SI and S2' Their intersections, at Cll=l, ~1, give the self-consistent equilibrium. Note 

that the stability criterion (1:1) is satisfied at this point As the currents in both beams are increased, the 

equilibrium begins to move out the diagonal, indicating that the beams are blowing up symmetrically 

(see figure 7). The crossing angle of the two curves decreases. The stability condition (27) continues 

to be met until the intersection of the two curves is 110 longer transverse. At this point, the slope of S 
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on the diagonal is equal to -I. When the current exceeds this critical point, condition (27) is no longer 

fulfilled, and the equilibrium becomes a saddle point. Simultaneously, two stable satellite equilibria are 

born. These satellites correspond to the asymmetric "flip-flop" equilibria observed in many electron­

positron colliders (e.g. SPEAR [4] and CESR [5]). The formation of the two satellite equilibria is an 

example of a "pitchfork bifurcation". As the current is increased further, these equilibria rapidly move 

away from the diagonal (see figure 8). 

A typical phase flow [6] for symmetric beams above the critical current is shown in figure 9. There are 

two basins of attraction. If the two beams are initially the same size, the system will first move 

approximately along the diagonal towards the saddle point. As it nears the saddle point, it will begin to 

veer to one side or the other, depending on flucruations or a small initial imbalance. It will then fall into 

one or the other of the two point attractors. Whether these are nodes or oscillating foci depends on the 

magnitude of Det (M). Just above the bifurcation, since Det (M) is still nearly zero, the stable equilibria 

will be nodes. However, it is theoretically possible for them to become foci as the current is increased 
funher, pushing Det (M) above [Tr (M)]2/4 as shown in (12) . The set of equilibria for all values of 

the current are plotted in figure 10. The familiar pitchfork shape is evident 

A beam system is called "asymmetric" if PI ~ P2. Although some machines are theoretically 

symmetric, it's rare that both beams are really identical. The lattice on either side of the IP may be 

subtly different, or the two beams might have slightly different currents. In other accelerators, this 
asymmetry may be an explicit design element The "asymmettic" colliders now being considered for 
B-meson production are examples. The above analysis is not specific to synunettic configurations; in 

fact, it's probably more useful in asymmettic applications because it provides an understanding of how 

the asymmetry affects the blow-up balance. 

The flip-flop effect is so named because workers at SPEAR found that they could flip the beam system 
out of one stable asymmettic equilibrium and into the other by introducing an appropriate asymmetry in 

the lattice. This was done by varying the RF phasing in the cavities on either side of the IP. To see 

how an asymmetry can flip the system, consider an initially symmettic system above the critical point 
with beam #1 blown up and beam #2 close to its "narural" size, figure Ila. As the current in beam #2 
is decreased, the parameter set PI changes and the blow-up S I also decreases. This causes the saddle 

point to approach the occupied stable equilibrium, as shown in figure lib. When the current in beam 

#2 falls below a certain critical value, the saddle and stable equilibria meet and annihilate. The system 

then flips (figure llc), falling into the opposite stable equilibrium with beam #2 blown up and beam 
Ifl at its natural size. If the current in beam #2 is then restored to its initial value, the system remains in 

the new state. This type of hysteresis is characteristic of "cusp catastrophes" and is similar to the 

phenomena observed in a ferro-magnetic material when the polarity of the ambient magnetic field is 

reversed. A representative hysteresis curve for the flip-flop effect is shown in figure 12 where the 

difference between the two beam radii are plotted agaiilst the current in beam 112, assuming the current 
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in beam # 1 remains fixed. Of course, the control parameter here need not be the current in beam #2. It 
could instead be any of several different parameters capable of significantly breaking the symmetry of 
the beam-beam system. 

The pitch-fork bifurcation that occurs here is directly analogous to a second order phase transition. As 
with a phase transition, relaxation times become very long in the vicinity of the critical point This is 

because one of the eigenvalues I.. goes through zero at the critical point while the other is equal to the 
trace Tr (M). For a symmetric system, the eigenvector corresponding to the small eigenvalue lies 
perpendicular to the diagonal while the non-zero eigenvector lies along the diagonal. Thus, a system 

just above the critical point and in a symmetric initial state (crl- crv = 0 quickly approaches the saddle 
point It then, very slowly, drifts away from the saddle toward one of the stable satellite equilibria. 
Additionally, if there is any noise in the system, the relatively weak stability of the satellite equilibria 
will result in a large response function for fluctuations perpendicular to the diagonal. This is a serious 
problem for strong-strong simulation programs where super-particle discreteness can drive large 
fluctuations in the relative sizes of the two beams close to the critical point. These fluctuations are 
artifacts of the simulation. The noise in a real system is so much weaker that the fluctuations there are 
probably unnoticable. A real machine, however, should clearly exhibit the characteristic long relaxation 
times. 

In an explicitly asymmetric collider, the two beam sizes are generally different even below the critical 
point (figure 13a). This condition should not be confused with a flip-flop condition which only occurs 
above the critical point Note that even a conventional one-ring collider can easily be made asymmetric 
by running different currents in the two beam. In asymmetric systems, the more general stability 
condition (23) must be used. 

Most machines operate below the critical point If beam size bifurcation is a problem in a particular 
machine, it is sometimes possible to raise the critical point through some adjustment of the parameters 

p. This adjustment typically moderates the slope of the function S(cr,p) at the self-consistent 
equilibrium. thereby strengthening the stability as determined by (23). This must be done with care, 

however, because moderating the slope of S(cr,p) at equilibrium can also increase the value of 

S(cr,p). This means that the beams are blown up more. so that the gain in luminosity achieved by 
higher currents could be lost to a larger beam blow-up. 

The beam-size asymmetry of a typical machine operating just below the critical point is extremely 
sensitive to small changes in the lattice or any other of the parameters p. This is because the curves 

representing the functions S( C1:2.Pl) and S(O"I.P:z} intersect almost tangentally near the critical point 
Even in supposedly symmetric machines, the operators usually have to make small adjustments to 

.. balance the two beam sizes. Consequently. thae is no a priori reason to believe that symmetric 
.. ,~. :-.; 
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machines are superior from a beam-beam point of view. It is usually assumed that maximum 
luminosity is achieved when the two beams are of equal sire. However, even if this is true, it should 
be no more difficult to produce beams with equal blow-up in an asymmetric system than in a 
symmetric system (see figure 13b). Unequal blow-up caused by one asymmetry in p can usually be 
eliminated by adjusting another asymmetry (for example, unequal blow-up due to different damping 
times might be eliminated by running each beam with different currents, with different beta functions at 
the IP, or different dispersions). For a more detailed discussion of this issue, see [7]. 

Comments and Conclusions 

The treatment described above assumes that both beams are round and that all parameters affecting the 
horizontal motion are identical to their counteiparts affecting the vertical motion. A similar treatment 
can applied to flat beams where, typically, the beam only blows up in the vertical direction. In 
principle, there's no reason why the assumption B could not be relaxed slightly and the analysis 
extended to more than the two variables. One might, for example, consider the horiwntal and vertical 

widths independently. The state space would then be four dimensional (crhlocrYI,crh2, cry:V rather than 

two (crlocr2>. The weak-strong equilibria (18) would fallon two-dimensional surfaces S(O"h,O"y;P), 
and the intersections of these surfaces would be points, still corresponding to the self-consistent 
equilibria. 

The theory of beam-beam self-consistency described in this paper is difficult to test with simulation 
because the assumption B, the one most likely to be incorrect, is built-in to most of the better known 
strong-strong simulation codes. It may be easier to test on a real accelerator where strong-strong beam 
performance can be easily compared to weak-strong. If the theory is correct, at least in its essentials, 

: then solving the mystery of the beam-beam interaction can be reduced to understanding weak-strong 
blow-up, and specifically, to understanding the shape and parametric dependencies of the weak beam 

size function S( cr;p). 

This work was funded by DOE and performed at the Lawrence Berkeley Laboratory under contract 
DE-AC03-76SF00098. I am grateful to the Exploratory Studies and Collider Physics groups at LBL 
for their generous support. 
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Figure 1. A vector field in the (51, (52) plane. The flow 
lines shown here lie parallel to the vectors and represent 
trajectories of the beam system as it approaches 
equilibrium. This field exhibits three equilibria: from left 
to right, a stable node, an unstable saddle, and a stable 
focus. The two basins are separated by a boundary that 
intersects the saddle PO~t. 
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Figure 2. The curves corresponding to 01=02=0 are 
superimposed on the vector field shown in figure 1. These 
curves correspond to points where the flow lines are either 
vertical or horizontal. The intersections of these curves 
correspond to the self-consistent equilibria. 
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Figure 3a. A schematic representation of the weak 
beam size function for fractional tunes 0 < v < .25. 
Tunes in this range, together with the linear focusing 
of the beam-beam force, reduce the beta function, and 
thus the beam width, at the IP. As 0" decreases, the 

beam 'shrinks until the linear tune shift ~ reaches a 
- -,- - - -' .,.,." - -

-_ certain threshold. Below this threshold, the weak 
~'am blows up due to incoherent beam-beam effects. 
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Figure 3b. Similar to fig. 3a, but here the tunes of the 
. weak beam are .25 < v < .5. The focusing action of the 
beam-beam interaction now results in a small increase 
in the · beta function and a corresponding expansion at 
intemiediate values of cr . 
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Figure 4a. Phase flow in the vicinity of a saddle point 
for which both weak-strong equilibria are stable. When 
the motion is constrained to either the horizontal or 
vertical intercept, it is stable (all arrows point inward). 



: 

, . 

" 
}, '."; 

crt 

Figure 4b. Phase flow in the vicinity of a stable focus 
for which one weak-strong equilibrium (creq2) is unstable. 
Motion constrained to the vertical intecept moves away 
from the equilibrium. I 
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Figure 5. Weak beam size function S(cr;p) for four 
different values of the strong beam current. These curves 
are derived from weak-strong simulation. The bifurcation . 
will occur at 310 since this is where the slope of S(cr;p) is-l 
on the diagonal . 

• '.' •• , <" , 
1 ',' .: • . ." . '. 



i' . ;'~,,:! " 

. \' ... , " :" . ," ~ 
" . ~; . ': .. ~~ .. 

1 

1 

Figure 6. Stable eqUilibrium at low currents and 
with no blow-up. The two beams are symmetrical. 
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Figure 7. Stable equilibrium at moderate currents · 
for symmetric beams. Both beams are slightly 
blown up. 
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Figure 8. The beam system above the critical point. 
There are now three equilibria. Although the system 
is still symmetric, the two stable equilibria 
correspond to asymmetric flip-flop states. 
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Figure 9. Typical phase flow for the symmetrical 
beam system above the critical point. This flow 
corresponds approximately to the weak beam size 
functions shown in figure 8. 
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Figure 10. Curves of stable (solid) and unstable ' 
(dashed) equilibria for a range of current values. These 
curves follow the intersections of the two functions SI 
and S2 as the current is' increased. The currents in the 

, two beams 'are constrained to be equal. 
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Figure 11 b. · As the current in beam #2 is decreased, 
the graph of S 1 moves to the left. The occupied 
stable equilibrium and the saddle point equilibrium 
approach one another. The size of beam #1 

.. decreases slightly. 
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Figure lIc. As the current in beam #2 decreases · 
further, the stable equilibrium and saddle point meet and 
then disappear. The system "flips" into the opposite 
flip-flop state. 
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Figure 12. Hysteresis curve for the beam flip illustrated in 
figure 11. This is a typical "cusp catastrophe". The system . 
falls off the fold when the current in beam #2 is varied. 
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Figure 13a. An asymmetric system below criticallity. 
There is one stable, asymmetric equilibrium. This is not a 
:'flip-flop" equilibrium. 
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Figure 13b. Another asymmetric system below 
criticality. As before, there is a single stable _ 
equilibrium. Here, however, the parameters p have 
been -fined-tuned ,to make the equilibrium ci 
symmetric . 
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